Ground states of a two-dimensional electron in a periodic magnetic field
نویسنده
چکیده
The two-dimensional Pauli Hamiltonian for an electron with spin 1/2 in a transverse magnetic field has the following property: addition of any doubly periodic (but not small) increment to the homogeneous field leaves the ground state, i.e., the lower Landau level, fully degenerate, despite the loss of symmetry, and is separated from the next levels by a finite gap (all the remaining levels spread out to form a continuous spectrum). For an integral or rational flux
منابع مشابه
Energy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملCalculation of Quasi-one-dimensional Interacting Electron Gas Using the Hartree-Fock Method
In this paper, the Hartree-Fock method has been formulated to investigate some of the ground state properties of quasi-one-dimensional interacting electron gas in the presence of the magnetic field. The bare coulomb interaction between electrons has been assumed. For this system, we have also computed some of its thermodynamic and magnetic properties such as the energy, pressure, incompressibil...
متن کاملExact many-electron ground states on diamond and triangle Hubbard chains
We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (i) a rewriting of the Hamiltonian into positive semidefinite form, (ii) the construction of a many-electron ground state of this Hamiltonian, and (iii) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the ...
متن کاملشبیه سازی اثر بی نظمی و میدان مغناطیسی بر ترابرد کوانتومی نانوساختارهای دو بعدی مدل شده با تقریب تنگابست
In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding ...
متن کامل